Παρασκευή 22 Οκτωβρίου 2010

Lecture 7 - Conscious of the Present; Conscious of the Past: Language (cont.); Vision and Memory

Overview:

This lecture finishes the discussion of language by briefly reviewing two additional topics: communication systems in non-human primates and other animals, and the relationship between language and thought. The majority of this lecture is then spent on introducing students to major theories and discoveries in the fields of perception, attention and memory. Topics include why we see certain visual illusions, why we don't always see everything we think we see, and the relationship between different types of memory.



And in the course of this I want to make a series of claims that go something like this. For perception, I want to first persuade you the problem of perception's hard and that successful perception involves educated and unconscious guesses about the world. For attention, I want to suggest that we attend to some things and not others and we miss a surprising amount of what happens in the world. For memory, there are many types of memory. The key to memory is organization and understanding. And you can't trust some of your memories.
..................
There is a story--I went to graduate school at MIT and there was a story there about Marvin Minsky who is the A.I. [artificial intelligence] guru. He--If you've heard the words--the phrase "artificial intelligence," that was him. And if you heard the claim that people are nothing more than machines made of meat--also him. Well, there's a story where he was doing work on robotics and he was interested in building a robot that could do all sorts of cool things that's like a robot. And the story goes the robot had to among--had to write--had to see the world. It had to be able to pick up things and recognize people and see chairs and navigate its way and Minsky said, "That's a tough problem. It's going to take a graduate student a whole summer to figure it out." And he assigned it to a graduate student for a summer project.

Visual psychologists, perception psychologists, love that story because the study of computer vision and robotics vision and the attempts to make machines that can identify and recognize objects has been a profound failure. There is, at this point, no machine on earth that could recognize people and objects and things at the level of a really dumb one-year-old. And the reason why is that it's a much harder problem than anybody could have expected. Well, what makes it such a hard problem?

Well, one reason why you might think it's an easy problem is you say, "Okay. We have to figure out the problem of how people see. Well, here's what we do." [pointing to a slide that caricatures the inside of a person's head as containing a little man, the real "you," sitting in a control room watching a television monitor that is connected to the larger-head's eyeballs] You're in--You're over there and here's your eye. And somehow it has to get to this television monitor and then you look at it and that'll solve the problem of how you see. So, sometimes people say, "Hey. I hear the eye flips things upside down. I guess this guy [the guy in your head] is going to have to get used to looking at things upside down. That's an interesting problem." No. That's not the way to look at it because that doesn't answer any questions. That just pushes the question back. Fine. How does "he" see? We're not answering anything.

Here's the right way to think about perception. You got the eye, which is very ugly and bloody, and then around here you have the retina. And the retina is a bunch of nerve cells. And the nerve cells fire at--for some stimulus and not others. And from this array of firings, "firing… not firing… firing… not firing," you have to figure out what the world is. So, a better view is like this. The firings of the neurons could be viewed as an array of numbers. You have to figure out how to get from the numbers to objects and people, and to actions and events. And that's the problem. It's made particularly a difficult problem because the retina is a two-dimensional surface and you have to infer a 3D world from a two-dimensional surface. And this is, from a mathematical point of view, impossible. And what this means is that there--For any two-dimensional image there is an indefinite number of three-dimensional images that correspond to it.

So for instance, suppose you have this on your retina, an array of light shaped like that [referring to a slide portraying a square and an irregular polygon that could be a square that is tilted backwards in space]. What does that correspond to in the world? Well, it could correspond to a thing just like that that you're looking for or it could correspond to a square that's tilted backwards. And so, you have to figure out which is which. And the way we solve this problem is that we have unconscious assumptions about how the world works. Our minds contain certain assumptions about how things should be that enable us to make educated guesses from the two-dimensional array on to the three-dimensional world.
...............
First, the problem of color. How do you tell a lump of coal from a snowball? Well, that's a lump of coal and that's a snowball, and it's from Google images. How do you know which is which? Well, a lump of coal you say is black and a snowball is white. How do you know? Well, maybe you have on your retina--Your retina responds to sort of color that hits it. It's oversimplified, but let's assume that this is true. So, this is black coming out and that's white and that's how you tell. But in fact, that can't be right. It can't be right because objects' color is not merely a matter of what material they're made of but of the amount of light that hits it. So, as I walk across the stage I fall into shadow and light, and none of you screams out, "Professor Bloom is changing colors!" Rather, you automatically factor out the change in illumination as this is happening.
...............
He was a world-renowned choir director and he suffered viral encephalitis which led to brain damage which destroyed most of his temporal lobes, his hippocampus, and a lot of his left frontal lobe. It could be--It could have been worse in that he retains the ability to talk. He seems to be--He's not intellectually impaired. He just can't form new memories and so he lives in this perpetual "now" where just nothing affects him and he feels--This has not always happened. There's more than one of these cases and it doesn't always happen like this, but he feels continually reborn at every moment. And we'll return to this and then ask what's going on here. But there's a few themes here.

I want to, before getting into detail about memory, I want to review some basic distinctions in memory when we talk about memory. So crudely, you could make a distinction between sensory memory, short-term memory, which is also known as working memory, and long-term memory. Sensory memory is a residue in your senses. There's a flash of lightning. You might see an afterimage. That afterimage is your sensory memory. There's somewhat of a longer echoic memory for sounds. So as somebody is talking to you even if you're not paying attention you'll store a few seconds of what they're saying, which is sometimes, when somebody's talking to you and you're not listening to them and they say, "You're not listening to me." And you say, "No. You were talking about--" and pick up the last couple of seconds from echoic memory. There's short-term memory.

Anybody remember what I just said? If you did, that's short-term memory--spans for a few minutes. And then there's long-term memory. Anybody know who Elvis is? Do you know your name? Do you know where you live? Your long-term memory store that you walk around with and you're not going to lose right away. When we think about amnesia in the movie sense, we think of a certain loss of long-term memory associated with autobiographical personal events.

There is a distinction between implicit and explicit, which we'll talk about it in more detail. But explicit, crudely, is what you have conscious access to. So, what you had for dinner last night. You could think back and say, "I had this for dinner last night." Implicit is more unconscious. What the word--what certain word--what the word "had" means, how to walk, how to ride a bicycle, that you might not be able to articulate and might not even be conscious of but still have access to.

There's a distinction between semantic memory and episodic memory. Semantic memory is basically facts, what a word means, what's the capital of Canada, and so on. Episodic is autobiography, is what happened to you. That Yale is in New Haven is semantic. That you went on vacation away from New Haven last week, it would be episodic. There is encoding stores and retrieval, which refers to different levels of what happens in memory. Encoding is getting the memory in, as when you study for a test or you have an experience. And storage is holding the memory. And retrieval is getting the memory out.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου